Dye’s theorem for tripotents in von Neumann algebras and JBW$$^*$$-triples
نویسندگان
چکیده
We study morphisms of the generalized quantum logic tripotents in JBW $$^*$$ -triples and von Neumann algebras. Especially, we establish a generalization celebrated Dye’s theorem on orthoisomorphisms between lattices to this new context. show existence one-to-one correspondence following maps: (1) posets preserving reflection $$u\rightarrow - u$$ (2) maps triples that preserve are real linear sets elements with bounded range tripotents. In more general description structure given by family Jordan *-homomorphisms Peirce 2-subspaces. By examples demonstrate optimality results. Besides set partial isometries its order orthogonality relation is complete invariant for
منابع مشابه
Kochen-Specker theorem for von Neumann algebras
The Kochen-Specker theorem has been discussed intensely ever since its original proof in 1967. It is one of the central no-go theorems of quantum theory, showing the non-existence of a certain kind of hidden states models. In this paper, we first offer a new, non-combinatorial proof for quantum systems with a type In factor as algebra of observables, including I∞. Afterwards, we give a proof of...
متن کاملA double commutant theorem for Murray-von Neumann algebras.
Murray-von Neumann algebras are algebras of operators affiliated with finite von Neumann algebras. In this article, we study commutativity and affiliation of self-adjoint operators (possibly unbounded). We show that a maximal abelian self-adjoint subalgebra A of the Murray-von Neumann algebra A(f)(R) associated with a finite von Neumann algebra R is the Murray-von Neumann algebra A(f)(A(0)), wh...
متن کاملVarious topological forms of Von Neumann regularity in Banach algebras
We study topological von Neumann regularity and principal von Neumann regularity of Banach algebras. Our main objective is comparing these two types of Banach algebras and some other known Banach algebras with one another. In particular, we show that the class of topologically von Neumann regular Banach algebras contains all $C^*$-algebras, group algebras of compact abelian groups and ...
متن کاملvon Neumann Algebras
For every selfadjoint operator T in the Hilbert space H, f(T) makes sense not only in the obvious case where / is a polynomial but also if / is just measurable, and if fn(x)-+f(x) for all x£R (with (/,) bounded) then fn(T)-+f(T) weakly, i.e. <fn(T)£9i)+<f(T)£9ti)V£9fiCH. Moreover the set {f(T)9 f measurable} is the set of all operators S in H invariant under all unitary transformations of H whi...
متن کاملVon Neumann Algebras
The purpose of these notes is to provide a rapid introduction to von Neumann algebras which gets to the examples and active topics with a minimum of technical baggage. In this sense it is opposite in spirit from the treatises of Dixmier [], Takesaki[], Pedersen[], Kadison-Ringrose[], Stratila-Zsido[]. The philosophy is to lavish attention on a few key results and examples, and we prefer to make...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Banach Journal of Mathematical Analysis
سال: 2021
ISSN: ['1735-8787', '2662-2033']
DOI: https://doi.org/10.1007/s43037-021-00134-w